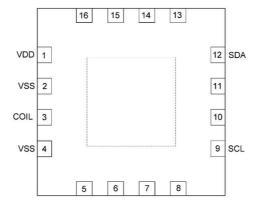


КЛЮЧЕВЫЕ ОСОБЕННОСТИ


- Измерение магнитного поля по 3 осям (XYZ), в диапазоне ±500 мТл.
- Встроенная диагностика тракта преобразования и чувствительных элементов.
- Программируемый режим энергопотребления/быстродействия.
- Встроенный детектор порога, по всем осям измерения магнитного поля.
- Встроенный датчик температуры.
- Формирование сигнала прерывания для внешнего микроконтроллера.
- Диапазон рабочих температур: -40С/+125С, напр. питания: 2.97В/3.6В.
- Последовательный интерфейс I2C, совмещенный с сигналом прерывания.
- 2 байтный и 1 байтный протокол обмена с master устройством.
- Исполнение без корпусное 1.096*0.99 мм, QFN16 3мм*3мм.

Версия микросхемы	Адрес I2С		
H3R (K1949494y)	35'h		

СТРУКТУРНАЯ СХЕМА МИКРОСХЕМЫ

ОБОЗНАЧЕНИЕ ВЫВОДОВ МИКРОСХЕМЫ

Вид сверху, корпус QFN16 (3мм*3 мм)

ФУНКЦИИ ВЫВОДОВ МИКРОСХЕМЫ

Название	QFN16	Описание
VDD	1	Питание 2.97В / 3.6В
VSS	2	Земля.
COIL	3	Тестовая катушка.
VSS	4	Земля.
SCL	9	Тактовая частота I2C, от 80 КГЦ до 400 КГЦ.
SDA	12	Данные I2C.

ПРЕДЕЛЬНЫЕ ХАРАКТЕРИСТИКИ

Параметр	Обозначение	Условия	Min	Max	Ед. Измерения
Максимальное напряжение питания	VDD		-0.3	4	В
Максимальный ток нагрузки цифровых выходов	ldo_max		-2	2	мА
Уровень стойкости к статическому электричеству	V_{ESD}	НВМ	-	2	КВ
Температура хранения	Ts		-60	150	۰C
Температура перехода	Tj		-60	175	۰C
Максимальная рассеивающая мощность	Ptot		_	12	мВт

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ (ТЕМЕПРАТУРА -40 ... +125°C)

Попоможн	06	Vozonus		Значения	1	Ед.	
Параметр	Обозначение	бозначение Условия Min		Тур	Max	Измерения	
	Па	раметры питан	РИЯ				
Напряжение питания	Vcc	-	2.97	3.3	3.6	В	
Ток потребления	1	w_mode=0, osr_avf=0.	-	-	3.5	мА	
ток потреоления	I _{VDD}	w_mode=7, osr_avf=0.	_	-	3	мкА	
Длительность фронта напряжения питания	tr_vdd	-	-	-	2	МС	
	Характерист	ики тракта пре	образован	РИЯ			
Линейный диапазон измерения магнитных полей	Bin	gain_xyz=1 pac	-500		+500	мТл	
Чувствительность во всем диапазоне, по каналам ХҮ Чувствительность во всем диапазоне, по каналам Z	Sx,y,z	gain_xyz= 1 pac		3.5		лсб/мТл	
Температурный дрейф чувствительности, по каналам ХҮZ	TC	-	-	-	8.6	%(FS)	
Смещение нуля, по каналам XYZ(rms)	Doff	-		+/-3		лсб	
Выходной шум в каналах ХҮ(р/р)	Dnoise_xy	osr_avf= 64/256 pac	7/4			лсб	
Выходной шум в канале Z(p/p)	Dnoise_z	osr_avf= 64/256 pac	2/1			лсб	
Чувствительность канала температуры	S _T			3.6		лсб/∘С	
Выходной шум канала ТЕМР(р/р)	Dnoise_temp			2		лсб	

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ (ТЕМЕПРАТУРА -40 ... +125°C) - ПРОДОЛЖЕНИЕ

Попомотр	Обозначение	Условия	;	Значения	Ед.			
Параметр	Ооозначение	УСЛОВИЯ	Min	Тур	Max	Измерения		
Время преобразования								
Время преобразования	Tconv	osr_avf=64		6.18		мс		
XYZ,TEMP	TCONV	osr_avf=256		24.6		мс		
Частота I2C								
Частота I2C	Fsclk	-	-	80	400	КГЦ		

ОПИСАНИЕ ФУНКЦИОНИРОВАНИЙ МИКРОСХЕМЫ

Начальная инициализация: После гарантированного установления напряжения питания на микросхеме (длительность фронта напряжения питания не более 2мс), необходимо посредством последовательного интерфейса I2C задать режим работы микросхемы (CONF_IS: en_wi_sh, W_MODE) и далее по сигналу прерывания, формируемому на выводе SCL, производить чтение данных из необходимых измерительных регистров(BXYZ_H,Temp_H,BXY_M,BZT_M,BXYZT_L).

Основные режимы работы микросхемы определяют:

- Скорость преобразования / ток потребления (CONF_IS: W_MODE).
- Работа в качестве порогового датчика, когда сигнал прерывания формируется только при достижении пороговых значений, которые также задаются в соответствующих регистрах. Конфигурация в регистрах TRIM_IH: s_int=1, DO_*.
- Режим постоянной выдачи информации о магнитном поле, в этом режиме сигнал прерывания формируется каждый цикл измерения XYZT(TRIM_IH: s_int=0).

Дополнительно возможна более точная подстройка чувствительности для каналов XY и Z, путем конфигурации соответствующих регистров (TRIM_IH, TRIM_RIH).

KAPTA PELUCTPOB MAG_3AX_HALL_*

Адр.	def.	Тип	Название	7	6	5	4	3	2	1	0
0 _h		R	BX_H		BX[13:6]						
1 _h		R	BY_H		BY[13:6]						
2 _h		R	BZ_H	BZ[13:6]							
3 _h		R	Temp_H	Temp[13:6]							
4 _h		R	BXY_M		BX[5:2] BY[5:2]						
5 _h		R	BZT_M	BZ[5:2] Temp[5:2]							
6 _h		R	BXYZT_L	BX[1	BY	[1:0]	BZ[[1:0]	Tem	p[1:0]	

КАРТА РЕГИСТРОВ MAG_3AX_HALL_* - ПРОДОЛЖЕНИЕ

Адр.	def.	Тип	Название	7	6	5	4	3	2	1	0
7 _h	9 _h	RW	DO_BX_H1		DO_BX_H[13:6]						
8 _h	30 _h	RW	DO_BX_H2	0	0 0 DO_BX_H[5:0]						
9 _h	F6 _h	RW	DO_BX_L1				DO_BX_	L[13:6]			
A _h	10 _h	RW	DO_BX_L2	0	0			DO_BX	_L[5:0]		
B _h	9 _h	RW	DO_BY_H1				DO_BY_I	H[13:6]			
C _h	30 _h	RW	DO_BY_H2	0	0			DO_BY	_H[5:0]		
D _h	F6 _h	RW	DO_BY_L1				DO_BY_I	_[13:6]			
E _h	10 _h	RW	DO_BY_L2	0	0			DO_BY	_L[5:0]		
F _h	A _h	RW	DO_BZ_H1	DO_BZ_H[13:6]							
10 _h	1 _h	RW	DO_BZ_H2	0	0 0 DO_BZ_H[5:0						
11 _h	F5 _h	RW	DO_BZ_L1	DO_BZ_L[13:6]							
12 _h	3F _h	RW	DO_BZ_L2	0	0			DO_BZ	_L[5:0]		
13 _h	8 _h	RW	CONF_IS	en_wi_sh	W	_MODE[2:	0]	en_tnz	en_stest	en_det_ov	-
14 _h	48 _h	RW	TRIM_IH	tr.	_ih_XY[2:0]			tr_ih_Z[2:0]	s_int	-
15 _h	50 _h	RW	TRIM_RIH	TRIM_RIO	P_XY[1:0]	TRIM_RI	OP_Z[1:0]	-	-	_	-
16 _h	0 _h	RW	AVF_FILT	0	0	gai	n_z	gair	ı_xy	osr	_avf
17 _h		R	HALL_OXH				HALL_OFF	_X[11:4]			
18 _h		R	HALL_OXL			0				HALL_O	FF_X[3:0]
19 _h		R	HALL_OYH	HALL_OFF_Y[11:4]							
1A _h		R	HALL_OYL	HALL_OFF_Y[3:0					F_Y[3:0]		
1B _h		R	HALL_OZH	HALL_OFF_Z[11:4]							
1C _h		R	HALL_OZL	HALL_OFF_Y[3:0					F_Y[3:0]		
1D _h		R	AMP_OH				AMP_0F	F[11:4]		•	
1E _h		R	AMP_OL			0				AMP_C	FF[3:0]

РЕГИСТРЫ ДЕТЕКТОРА ПЕРЕГРУЗКИ: DO_BX,Y,Z_H1,2;L1,2

Регистры пороговых значений являются 14 битными знаковыми числами, значения которых распределено по нескольким регистрам. Момент срабатывания детектора перегрузки учитывает гистерезис= +/-4LSB.

Верхний порог, канал X: DO_BX_H1= DO_BX_H[13:6]; DO_BX_H2= DO_BX_H[5:0] Нижний порог, канал X: DO_BX_L1= DO_BX_L[13:6]; DO_BX_L2= DO_BX_L[5:0] Верхний порог, канал Y: DO_BY_H1= DO_BY_H[13:6]; DO_BY_H2= DO_BY_H[5:0] Нижний порог, канал Y: DO_BY_L1= DO_BY_L[13:6]; DO_BY_L2= DO_BY_H[5:0] Верхний порог, канал Z: DO_BZ_H1= DO_BZ_H[13:6]; DO_BZ_H2= DO_BZ_H[5:0] Нижний порог, канал Z: DO_BZ_L1= DO_BZ_L[13:6]; DO_BZ_L2= DO_BZ_L[5:0]

РЕГИСТР КОНФИГУРАЦИИ МИКРОСХЕМЫ, CONF_IS

Название	def,h	Примечание
[0]	0	Резерв.
en_det_ov[1]	0	Включение/выключение детектора перегрузки. 0= выключен, 1= включен.
en_stest[2]	0	Включение/выключения режима тестирования микросхемы. 0= выключен, 1= включен. *
en_tnz[3]	1	Включение/выключения тензокомпенсации канала Z. 0= выключен, 1=включен.
W_MODE[6:4]	0	Настройка скорости преобразования/тока потребления. ** 0=2403 выб/с; 1=1915 выб/с; 2=179 выб/с; 3=93.6 выб/с; 4=12.1 выб/с; 5=3 выб/с; 6=0.76 выб/с; 7=0.38 выб/с
en_wi_sh[7]	0	Включение/выключение спящего режима. 0= пассивный, 1= активный

^{*}При активации режима тестирования в каналах измерения магнитного поля ВХ,Ү,Z формируется фиксированный выходной код, не зависящий от магнитного поля, при комнатной температуре.

РЕГИСТРЫ ПОДСТРОЙКИ ОПОРНОГО ТОКА ЭЛЕМЕНТОВ ХОЛЛА, TRIM_IH, УПРАВЛЕНИЕ ИСТОЧНИКОМ ПРЕРЫВАНИЙ

Название	def,h	Примечание
[0]	0	Резерв.
s_int[1]	0	Установка источника прерываний. 0= сигнал готовности данных измерительных каналов. 1= выход детектора перегрузки.
tr_ih_Z[4:2]	2	Допустимые значения от 0 до 7. Подстройка тока питания Z элемента Холла. 0= мин. ток, 7= макс. ток.
tr_ih_XY[7:5]	2	Допустимые значения от 0 до 7. Подстройка тока питания XY элементов Холла. 0= мин. ток, 7= макс. ток.

^{**}Значения скорости преобразования даны для типовой частоты внутреннего RC генератора = 4 МГЦ и значении osr_avf=0.

РЕГИСТРЫ ПОДСТРОЙКИ ОПОРНОГО РЕЗИСТОРА ФОРМИРОВАТЕЛЯ ТОКА ЭЛЕМЕНТОВ ХОЛЛА, TRIM_RIH

Название	def,h	Примечание
[3:0]	0	Резерв.
TRIM_RIOP_Z[5:4]	1	Допустимые значения от 0 до 3. 0= мин. опорный резистор, макс. ток питания Холла. 3= макс. резистор, мин. ток питания Холла.
TRIM_RIOP_XY[7:6]	1	Допустимые значения от 0 до 3. 0= мин. опорный резистор, макс. ток питания Холла. 3= макс. резистор, мин. ток питания Холла.

КОНФИГУРАЦИЯ УСРЕДНЯЮЩЕГО ФИЛЬТРА AVF_FILT

Название	def,h	Примечание
osr_avf[1:0]	0	Число усредняемых выборок АЦП (на каждый канал). 0= 4 выборки; 1= 64 выборки; 2,3= 256 выборок; 3= запрещено.
gain_xy[3:2]	0	Усиление выходных данных, усредняющего фильтра, для каналов ХҮ. 0= 1 рас; 1= 2 раза ; 2,3= 4 раза.
gain_z[5:4]	0	Усиление выходных данных, усредняющего фильтра, для канала Z. 0= 1 рас; 1= 2 раза ; 2,3= 4 раза.
[7:6]	0	Резерв.

^{*}не функционирует в опытных образцах.

ОПИСАНИЕ ИНТЕРФЕЙСА 12С

Общее описание

Интерфейс I2C входящий в микросхему предназначен для чтения и записи регистров микросхемы, может работать в 1 байтном и двухбайтном режимах. Вывод SCL, тактовой частоты, совмещен с сигналом прерывания. Прерывания могут формировать сигнал окончания преобразования измерительных каналов или детектора перегрузки.

Версия микросхемы	Адрес I2С		
H3R (K1949YЭ4Y)	35'h		

Режимы работы I2C

Интерфейс может работать в 1 байтном и двух байтном режиме. В 1 байтном режиме доступно только чтение регистров измерительных каналов (BXYZ_H, Temp_H, BXY_M, BZT_M, BXYZT_L), только в этом режиме возможно чтение всех измерительных каналов, на максимальной частоте преобразования. В двух байтном режиме доступно чтение и запись всех регистров микросхемы.

Конфигурация интерфейса микросхемы в 1 байтный или 2 байтный режим работы осуществляется путем установки значения 7 бита, в 1 байте передаваемых slave устройству данных.

• 2 байтный тип: 7 бит= 0

1 байтный тип: 7 бит= 1

Режимы работы I2C - продолжение

В 1 байтном режиме, в пакете данных отсутствует адрес регистра, имеется возможность читать только данные измерительных каналов, при каждом обращении выдаются последовательно все семь регистров измерительных данных (1: BX_H, 2:BY_H, 3:BZ_H, 4:Temp_H, 5:BXY_M, 6:BZT_M, 7:BXYZT_L). Для синхронного сбора данных, без их потери, мастер устройство должно успевать считывать все данные, за время не превышающее:

264 мкс (обработка прерывания, чтение 7регистров, SCL=400 КГЦ).

В случае неправильного обращения по адресу микросхемы или регистра, микросхема выдает 1'b1 на бите ACK (ACL slave) и перестаёт взаимодействовать с мастер устройством, пока не будет установлен стоп бит.

Если на линии SCL, после установки старт бита, не происходило изменение сигнала в течении 64 тактов внутренней частоты(~16мкс), микросхема прекратит взаимодействовать с master устройством пока линии SCL, SDA не встанут в 1, либо не будет установлен стоп бит.

ВРЕМЕННЫЕ ПАРАМЕТРЫ ИНТЕРФЕЙСА (RPUL_UP(SDA,SCL)=4.7 КОМ)

Параметр	Обозн.	Мин.	Тип.	Макс.
Частота интерфейса	fscl	-	100 КГЦ	400 КГЦ
Длительность "0", SCLK	T_L	1.15 мкс	-	-
Длительность "1", SCLK	T_H	1.15 мкс	-	_
	Tsta	1.15 мкс	-	-
	Tstop	1.15 мкс	-	-
	Twait	1.15 мкс	-	-
	Tsu	100 нс	-	-
	Thold	0	-	-
	Tfall	-	-	50 нс
	Trise	-	-	50 нс
Ширина "0" сигнала прерывания, на выводе SCL	t _{INT}	1.27 мкс	2 мкс	2.96 мкс
Минимальное время преобразования	t _{conv}	264 мкс	-	-

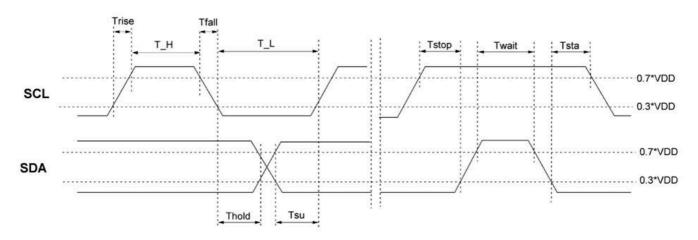


Диаграмма формирования сигналов интерфейса

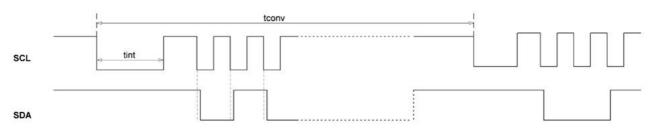
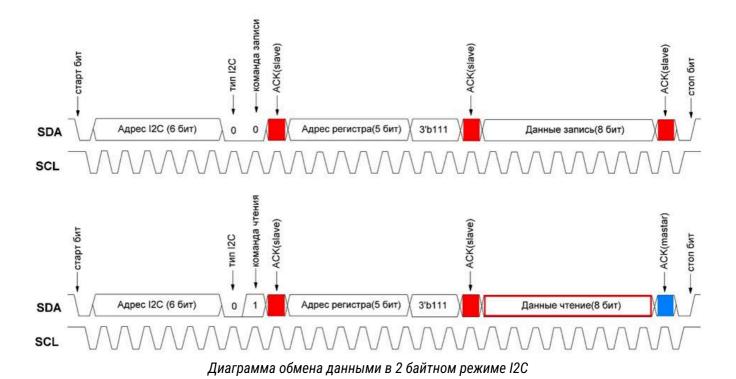



Диаграмма формирования сигнала прерывания (готовности данных) на выводе SCL

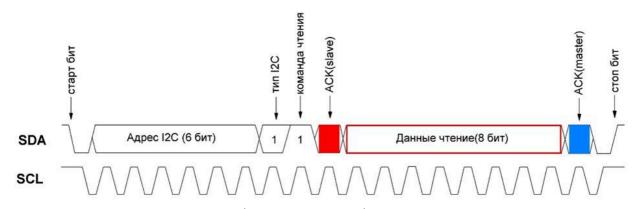
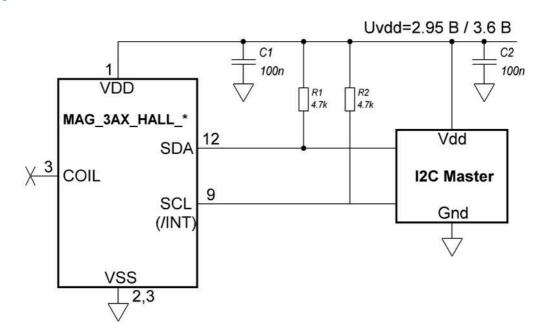
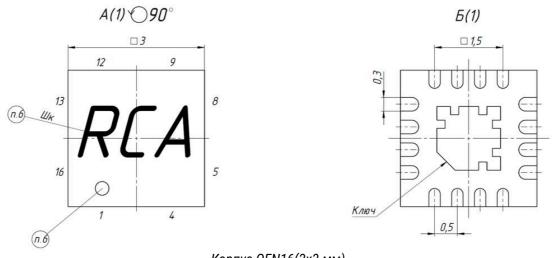
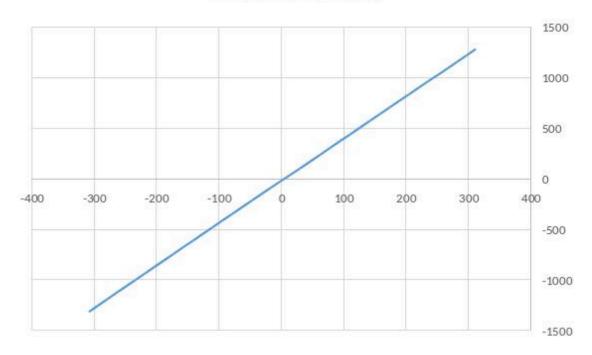
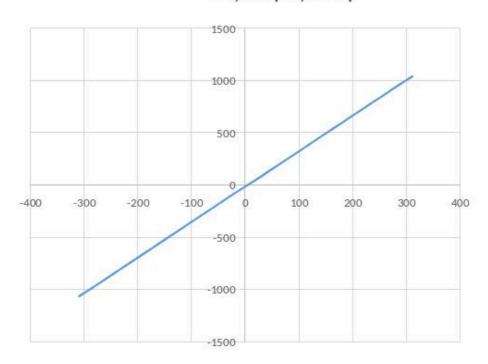




Диаграмма обмена данными в 1 байтном режиме I2C

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ

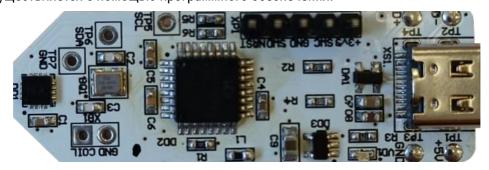

ГАБАРИТНЫЕ РАЗМЕРЫ КОРПУСОВ МИКРОСХЕМЫ


ТИПОВЫЕ ЗАВИСИМОСТИ МИКРОСХЕМЫ

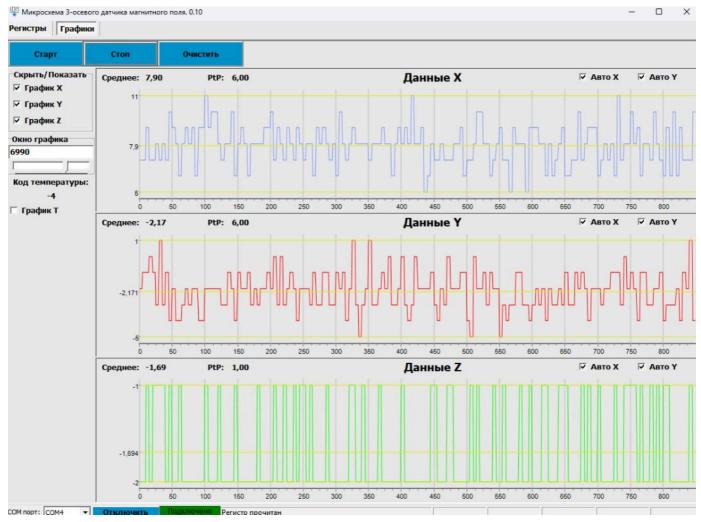
Dх,лсб(Вх, мТл)

Данные канала X, при воздействии магнитного поля в диапазоне +/- 310 мТл. SNS= 4.1 лсб/мТл.

Dz,лсб(Вz, мТл)



Данные канала Z, при воздействии магнитного поля в диапазоне +/- 310 мТл. SNS= 3.4 лсб/мТл.



ДЕМОНСТРАЦИОННЫЕ И ОТЛАДОЧНЫЕ СРЕДСТВА

Демонстрационно- отладочная плата состоит из установленной микросхемы датчика магнитного поля и микроконтроллера, реализующего преобразование интерфейсов (I2C -> USB). Конфигурация параметров микросхемы осуществляется с помощью программного обеспечения.

Внешний вид отладочной платы.

Внешний вид программы конфигурации микросхемы, в режиме потокового сбора данных с ХҮХ каналов.

Версия 1.0 от 12.08.25